Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties.
نویسندگان
چکیده
Molecular polar surface area (PSA), i.e., surface belonging to polar atoms, is a descriptor that was shown to correlate well with passive molecular transport through membranes and, therefore, allows prediction of transport properties of drugs. The calculation of PSA, however, is rather time-consuming because of the necessity to generate a reasonable 3D molecular geometry and the calculation of the surface itself. A new approach for the calculation of the PSA is presented here, based on the summation of tabulated surface contributions of polar fragments. The method, termed topological PSA (TPSA), provides results which are practically identical with the 3D PSA (the correlation coefficient between 3D PSA and fragment-based TPSA for 34 810 molecules from the World Drug Index is 0.99), while the computation speed is 2-3 orders of magnitude faster. The new methodology may, therefore, be used for fast bioavailability screening of virtual libraries having millions of molecules. This article describes the new methodology and shows the results of validation studies based on sets of published absorption data, including intestinal absorption, Caco-2 monolayer penetration, and blood-brain barrier penetration.
منابع مشابه
Towards a Correlation between Polar Surface Area of Drugs with Ex-vivo Transdermal Flux Variability
The aim of the present study was to investigate the relationship between the polar surface area and other molecular properties of the model drugs and their transdermal permeability across the rat skin. Few model drugs which are weakly acidic (ibuprofen, aceclofenac and glipizide) and weakly basic (olanzapine, telmisartan and sildenafil citrate) were selected for the study based on Polar surface...
متن کاملAn Overview of the Application of Poly(lactic-co-glycolic) Acid (PLGA)-Based Scaffold for Drug Delivery in Cartilage Tissue Engineering
Poly(lactic-co-glycolic) acid (PLGA) has attracted a considerable amount of interest for biomedical application due to its biocompatibility, tailored biodegradation rate (depending on the molecular weight and copolymer ratio), approval for clinical use in humans by the U.S. Food and Drug Administration (FDA), the potential to change surface properties to create better interaction with biologica...
متن کاملAnalysing molecular polar surface descriptors to predict blood-brain barrier permeation
Molecular polar surface (PS) descriptors are very useful parameters in prediction of drug transport properties. They could be also used to investigate the blood-brain barrier (BBB) permeation rate for various chemical compounds. In this study, a dataset of drugs (n = 19) from various pharmacological groups was studied to estimate their potential properties to permeate across the BBB. Experiment...
متن کاملA Self-Consistent Technique for the Construction and Evaluation of the Three-Parameter Corresponding States Principles
A self-consistent approach for the evaluation of the existing three-parameter corresponding states principles of non-polar fluids and the calculation of the corresponding states parameters is presented. This self consistent approach is based upon the assumption that the contribution of the third parameter to the thermophysical properties is much smaller than the contributions of the first two p...
متن کاملTransport of a Liquid Water-Methanol Mixture in a Single Wall Carbon Nanotube
In this work, a molecular dynamics simulation of the transport of water - methanol mixture through the single wall carbon nanotube (SWCNT) is reported. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is as an intermediate between polar and strongly polar molecules. Some physical properties of the methanol-water mixture such as r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of medicinal chemistry
دوره 43 20 شماره
صفحات -
تاریخ انتشار 2000